
Nair 1

Praveen Nair

LIGN 6

20 March 2019

Does Winning Correlate with More Positive Sentiment in Sportswriting?

It’s an open secret that sports journalism often has little to do with the play on the field.

Narratives, biases, and selective focus make sportswriting just as unpredictable and chaotic as

the sports themselves. But, as the saying goes, winning cures all. But does winning really lead to

a more positive spin in media portrayals, or do the higher expectations of elite teams lead to

more negative articles? For this project, I decided to use sentiment analysis to study the

association between a sports team’s winning percentage and the positivity of articles about that

team in sportswriting.

 In order it accomplish this, I used a few Python packages as well as some Unix text

manipulation. I was using Python 3.7.2 run on a Jupyter Notebook (which I personally find a bit

easier for immediately viewing text and table output than running a script in an IDE). Chiefly, I

used the built-in Element Tree module to read in and parse the provided corpus into an iterable

object that I could more easily understand, NLTK (Natural Language Toolkit) to run the actual

sentiment analysis, and Pandas to store and manipulate the many tables I used in the project.

Within NLTK, I used the VADER sentiment analyzer to derive compound scores for the

sentiment of the sports articles. In a more peripheral role, I used the Python packages numpy (for

math tasks), os (to iterate through the corpus files), matplotlib and seaborn (for basic

visualization), and json (to write to and read from a JSON file). All packages were installed

using Python’s pip package manager, and the Jupyter Notebook software came packaged with an

installation of Anaconda.

Nair 2

 The corpus I used was a corpus from the New York Times spanning the dates July 1, 1994

and June 30, 2002. It has an approximate size of 5.6 GB, so it contains approximately

5,600,000,000 characters. The data is in an XML format, with each article containing its

headline, dateline, and text. This corpus includes everything from the Times, so I cut it down to a

smaller database of 190 MB of NBA and NFL articles. One benefit of using the New York Times

is that it has relatively few articles that are about routine games and scores, which cuts down on

the number of articles that are about two teams at once. In addition to this data, I used data on

winning percentage from Sports Reference (specifically basketball-reference.com and pro-

football-reference.com), which tracks a huge variety of sports data from a multitude of sports. I

extracted a table for each football and basketball, and then joined them (using Pandas) with my

dataset of sentiment scores. Finally, I created my own lists of teams and possible names using

my own research online (most complications arose from relocations and renaming.) As I

mentioned before, I used NLTK’s included language model, VADER (Valence Aware

Dictionary and sEntiment Reasoner). VADER is trained on social media data, which is a very

different context than the more formal context of the New York Times. However, although a

disparity is sure to exist, I trust that VADER is more accurate than if the roles of social media

and newspaper were flipped, and it was easily available as part of NLTK.

 What follows is the Python I used for this analysis. Prior to running the Python, however,

I did some work in Unix to clean the data up a bit. I used sed (stream editor) to replace certain

tokens that the Element Tree parser couldn’t understand, I added an html tag at the top and

bottom of each file, and I also converted the files to .txt and formatted them in UTF-8. Note: the

Jupyter Notebook also serves as my presentation, so you can ignore some of those elements.

How does the positivity of sportswriting about a sports team
correlate with their success?

A slightly disappointing look at the turn-of-the-century New York Times sports section.

By Praveen Nair

In [1]:
import nltk
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import xml.etree.ElementTree as ET
import os
import numpy as np
import matplotlib
import json
import pandas as pd
import seaborn as sns
from IPython.display import Image

The Corpus

The entire New York Times from July 1, 1994 to June 30, 2006. It's around 6 GB, so around a billion words.

In [2]:
Image(filename = 'corpus_sample.png')

Cool. But how do I access all this information?

Python has a built-in library for interacting with xml, and modeling it very easily as a tree of elements.

In [3]:
Image(filename = 'element_tree.png')

Out[2]:

Image(filename = 'element_tree.png')

Step 1: Get only NBA and NFL articles.

We need to delete articles about such topics as:
The OJ trial

The impeachment of Bill Clinton

and OJ Simpson.

But how? It turns out the dateline of each article gives us some information about what kind of
news it is. 'BKN' refers to NBA basketball, and 'FBN' refers to NFL football.

In [4]:
Image(filename = 'corpus_sample.png')

Out[3]:

Out[4]:

In [5]:
Gets every NBA and NFL article in the tree and returns it
def get_sports_articles(element_tree):
 count = 0
 root = element_tree.getroot()
 # Iterates through every document
 for doc in root[:]:
 dateline = doc.find('DATELINE').text
 # Finds if it's a football/basketball article
 if 'BKN' in dateline or 'FBN' in dateline:
 count += 1
 # If it isn't, we remove it from the tree -- not the file!
 else:
 root.remove(doc)
 return element_tree

In [6]:
run_parser = False
if run_parser:
 # Iterate through corpus
 for file in os.listdir():
 if file[-3:] == 'txt':
 print(file)
 tree = ET.parse(file)
 # Write trimmed tree to a new file
 get_sports_articles(tree).write('sports_' + file)

Step 2: Get the sentiment of every NBA/NFL article.

How are we going to do that? Well, NLTK includes a sentiment analysis tool called
VADER.

VADER, HUGE disclaimer, is trained on social media data.

In [7]:
analyzer = SentimentIntensityAnalyzer()

In [8]:
analyzer.polarity_scores('Boy, that last Transformers film stunk. They should fire the director in
to the sun.')

In [9]:
analyzer.polarity_scores(
 'Transformers: Age of Extinction is a historic film. It is simply fantastic. Better than The G
odfather.')

Now we iterate through the directory and get all the headline, dateline, and sentiment of the
text.

In [10]:
Takes element tree of text and turns it into a list of dictionaries
Each dictionary contains the headline, dateline, and sentiment of that article's text
Parameter = tree

Out[8]:
{'neg': 0.294, 'neu': 0.706, 'pos': 0.0, 'compound': -0.6124}

Out[9]:
{'neg': 0.0, 'neu': 0.667, 'pos': 0.333, 'compound': 0.7579}

Parameter = tree
def tree_to_dicts(element_tree):
 root = element_tree.getroot()
 articles = []
 for doc in root:
 this_doc = {}
 doc_elems = [i for i in doc]
 for i in doc_elems:
 if i.tag == 'HEADLINE':
 this_doc['HEADLINE'] = i.text
 elif i.tag == 'DATELINE':
 this_doc['DATELINE'] = i.text
 elif i.tag == 'TEXT':
 text_str = ''
 for j in i:
 text_str += j.text
 this_doc['SENTIMENT'] = analyzer.polarity_scores(text_str)['compound']
 articles.append(this_doc)
 return articles

In [11]:
if run_parser:
 sports_sentiment = []
 # Iterates through trimmed sports files,
 # and runs the above function on each
 for file in os.listdir():
 if file[:7] == 'sports_':
 tree = ET.parse(file)
 sports_sentiment += tree_to_dicts(tree)
 print(file)

Step 3: Turn it into a JSON so I don't have to redo steps 1 and 2 every
time.

In [12]:
with open('sports_sentiments', 'w') as file_out:
json.dump(sports_sentiment, file_out)

Step 4: Read back fron JSON.

In [13]:
with open('sports_sentiments', 'r') as file_in:
 sports_sentiment = json.load(file_in)

Step 5: Make a list of every team in the NBA and NFL. Some teams have
alternate names, so we want to include those.

In [14]:
nba_teams = [['76ers', 'Sixers', 'Philadelphia', 'Philly'],
 ['Heat', 'Miami'], ['Knicks', 'New York'],
 ['Magic', 'Orlando'], ['Celtics', 'Boston'],
 ['Nets', 'Jersey'], ['Wizards', 'Bullets', 'Washington', 'D.C.'],
 ['Bucks', 'Milwaukee'], ['Raptors', 'Toronto'],
 ['Hornets', 'New Orleans', 'Charlotte'],
 ['Pistons', 'Detroit'], ['Cavaliers', 'Cavs', 'Cleveland'],
 ['Hawks', 'Atlanta'], ['Bulls', 'Chicago'],
 ['Spurs', 'San Antonio'], ['Jazz', 'Utah'],
 ['Mavericks', 'Mavs', 'Dallas'],
 ['Timberwolves', 'Wolves', 'Minnesota'],
 ['Rockets', 'Houston'], ['Nuggets', 'Denver'],
 ['Grizzlies', 'Vancouver', 'Memphis'],
 ['Lakers'], ['Kings', 'Sacramento'],
 ['Suns', 'Phoenix'], ['Blazers', 'Portland'],
 ['Sonics', 'Seattle'], ['Clippers'],

 ['Sonics', 'Seattle'], ['Clippers'],
 ['Warriors', 'Golden State', 'Oakland'],
 ['Pacers', 'Indiana']
]
len(nba_teams)

In [15]:
nfl_teams = [['Seahawks', 'Seattle'],
 ['49ers', 'San Francisco', 'Niners'],
 ['Raiders', 'Oakland'], ['Rams', 'St. Louis'],
 ['Chargers', 'San Diego'], ['Cardinals', 'Arizona', 'Phoenix'],
 ['Broncos', 'Denver'], ['Chiefs', 'Kansas City', 'K.C.'],
 ['Cowboys', 'Dallas'], ['Vikings', 'Minnesota'],
 ['Saints', 'New Orleans'], ['Packers', 'Green Bay'],
 ['Bears', 'Chicago'], ['Colts', 'Indianapolis'],
 ['Titans', 'Tennessee', 'Oilers', 'Houston'],
 ['Bengals', 'Cincinnati'], ['Lions', 'Detroit'],
 ['Browns', 'Cleveland'], ['Panthers', 'Carolina'],
 ['Bills', 'Buffalo'], ['Steelers', 'Pittsburgh'],
 ['Falcons', 'Atlanta'], ['Jaguars', 'Jags', 'Jacksonville'],
 ['Buccaneers', 'Bucs', 'Tampa'], ['Dolphins', 'Miami'],
 ['Patriots', 'New England'], ['Jets'], ['Giants'],
 ['Eagles', 'Philadelphia', 'Philly'], ['Ravens', 'Baltimore'],
 ['Redskins', 'Washington']
]
len(nfl_teams)

Step 6: Now we're going to iterate through those team names, find articles
matching them, and find the average sentiment of those articles.

In [16]:
nba_team_sentiment = []
for team in nba_teams:
 team_articles = []
 # For each article, we find if the team is mentioned
 # in the headline or dateline
 for article in sports_sentiment:
 team_in_article = False
 has_headline = len(article) == 3
 if has_headline:
 lines = article['HEADLINE'] + article['DATELINE']
 else:
 lines = article['DATELINE']
 for name in team:
 if name.upper() in lines:
 team_in_article = True
 if team_in_article:
 team_articles.append(article['SENTIMENT'])
 nba_team_sentiment.append((team[0], np.mean(team_articles), len(team_articles)))

In [17]:
nfl_team_sentiment = []
for team in nfl_teams:
 team_articles = []
 # For each article, we find if the team is mentioned
 # in the headline or dateline
 for article in sports_sentiment:
 team_in_article = False
 has_headline = len(article) == 3
 if has_headline:
 lines = article['HEADLINE'] + article['DATELINE']
 else:

Out[14]:
29

Out[15]:
31

 else:
 lines = article['DATELINE']
 for name in team:
 if name.upper() in lines:
 team_in_article = True
 if team_in_article:
 team_articles.append(article['SENTIMENT'])
 nfl_team_sentiment.append((team[0], np.mean(team_articles), len(team_articles)))

In [18]:
Make the outputs of the above functions into DataFrames
nba = pd.DataFrame(nba_team_sentiment, columns = ['Team', 'Sentiment Score', 'n'])
nfl = pd.DataFrame(nfl_team_sentiment, columns = ['Team', 'Sentiment Score', 'n'])

Step 7: Now let's introduce winning percentage. This data was extracted from
Basketball and Football Reference.

In [19]:
Read in data as DataFrame
nba_win_pct = pd.read_csv('nba_win_pct.csv')
nfl_win_pct = pd.read_csv('nfl_win_pct.csv')

nba = nba.set_index('Team')
nba_win_pct = nba_win_pct.set_index('Team')
nfl = nfl.set_index('Team')
nfl_win_pct = nfl_win_pct.set_index('Team')

Join the win percentage tables with our existing ones
nba = nba.join(nba_win_pct)

nfl = nfl.join(nfl_win_pct)

In [20]:
nba

Out[20]:

Sentiment
Score n win_pct

Team

76ers 0.499861 571 0.434

Heat 0.543800 1181 0.579

Knicks 0.532696 2859 0.572

Magic 0.649549 651 0.583

Celtics 0.697678 1811 0.413

Nets 0.509169 1395 0.407

Wizards 0.595312 338 0.399

Bucks 0.411393 166 0.466

Raptors 0.533801 226 0.413

Hornets 0.656013 686 0.579

Pistons 0.557420 171 0.510

Cavaliers 0.510956 290 0.468

Hawks 0.632464 1949 0.498

Bulls 0.629662 971 0.506

Spurs 0.646225 696 0.646

Jazz 0.633806 387 0.689

Mavericks 0.549045 1567 0.441

Timberwolves 0.504612 182 0.487

In [21]:
nfl

Rockets 0.627484 1160 0.530

Nuggets 0.644631 425 0.359

Grizzlies 0.590410 171 0.229

Lakers 0.681265 2637 0.689

Kings 0.543329 774 0.522

Suns 0.645970 1049 0.582

Blazers 0.498918 401 0.603

Sonics 0.625120 1549 0.638

Clippers 0.537423 929 0.309

Warriors 0.516587 595 0.303

Pacers 0.633136 667 0.598

Sentiment
Score n win_pct

Team

Out[21]:

Sentiment
Score n win_pct

Team

Seahawks 0.646313 1481 0.477

49ers 0.633198 1287 0.648

Raiders 0.570546 1001 0.516

Rams 0.584291 398 0.492

Chargers 0.764495 447 0.398

Cardinals 0.601700 831 0.375

Broncos 0.709480 599 0.617

Chiefs 0.595625 418 0.570

Cowboys 0.575306 3863 0.531

Vikings 0.568066 290 0.602

Saints 0.725607 492 0.383

Packers 0.757065 533 0.672

Bears 0.564256 630 0.445

Colts 0.633979 534 0.477

Titans 0.622307 856 0.516

Bengals 0.445499 157 0.328

Lions 0.539910 170 0.445

Browns 0.616966 318 0.350

Panthers 0.688494 127 0.411

Bills 0.624590 265 0.508

Steelers 0.729824 438 0.617

Falcons 0.646237 1536 0.438

Jaguars 0.587309 228 0.554

Buccaneers 0.688262 413 0.523

Dolphins 0.628907 1181 0.602

Patriots 0.739133 2281 0.547

Jets 0.555291 1796 0.453

Giants 0.583697 1580 0.504

Eagles 0.571196 616 0.496

Ravens 0.644011 232 0.484

Redskins 0.594705 400 0.457

In [22]:
sns.regplot(nba['win_pct'], nba['Sentiment Score'])

In [23]:
sns.regplot(nfl['win_pct'], nfl['Sentiment Score'])

In [24]:
r_nba = np.corrcoef(nba['win_pct'], nba['Sentiment Score'])[0][1]
r_nba

In [25]:
r_nfl = np.corrcoef(nfl['win_pct'], nfl['Sentiment Score'])[0][1]
r_nfl

Sentiment
Score n win_pct

Team

C:\Users\prave\Anaconda3\lib\site-packages\scipy\stats\stats.py:1713: FutureWarning: Using a non-t
uple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[s
eq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will r
esult either in an error or a different result.
 return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval

Out[22]:
<matplotlib.axes._subplots.AxesSubplot at 0x18a7549a080>

Out[23]:
<matplotlib.axes._subplots.AxesSubplot at 0x18a757fac88>

Out[24]:
0.34246493082060614

In [26]:
Image(filename = 'a1f.png')

Well, while we're here, we might as well see another relationship: How does
win percentage correlate with mentions in the corpus?

The teams at the top right are the Knicks and Lakers, predictably. At the bottom left are the
Grizzlies.

In [27]:
sns.regplot(nba['win_pct'], nba['n'])
print('r:', np.corrcoef(nba['win_pct'], nba['n'])[0][1])

Out[25]:
0.294423915329532

Out[26]:

r: 0.2979703551139872

This graph is called "Why Nobody Likes the Dallas Cowboys."

Bottom left teams, by the way? Cleveland Browns and Cincinnati Bengals. Sorry, Ohio.

In [28]:
sns.regplot(nfl['win_pct'], nfl['n'])
print('r:', np.corrcoef(nfl['win_pct'], nfl['n'])[0][1])

This presentation is dedicated to the loving memory of the three teams that changed their
names/locations during the period of this corpus.

In [29]:
Image(filename = 'deadteams.png')

r: 0.16237368454380122

Out[29]:

Nair 3

 As far as I can tell, there isn’t much I can do in the way of error analysis, since the whole

design of my project was to derive some values that, to the best of my knowledge, I obtained

correctly. This project could be improved in a lot of ways. I ended up throwing away a lot of data

about the date of each article, settling instead for average win percentage over the period of the

corpus. I had originally planned to join the sentiment data with data about the team’s Elo, as is

publicly available in datasets from FiveThirtyEight. I did this for two reasons: to cut down on

processing time, and because individual article sentiments could often have very little to do with

the preceding week’s action on the field. I felt that, especially since the Times doesn’t do a lot of

game-by-game recaps, normalizing the sentiment over time would lead to a more representative

conclusion, albeit a less substantive one. This project could also do better in how it determined

the sentiment when referring to a team. After all, I had an extremely high granularity of an article

each to check the overall sentiment. Especially in a zero-sum game like basketball and football,

this can change results. For example, saying “The Pistons absolutely destroyed the Wizards, who

put up a pathetic 78 points” might return a very negative sentiment score, but it is a positive

thing to write about the Pistons. Once again, I threw away this data about the reference of words

to cut down on processing time (and I’m not sure I have the expertise to decode such patterns

anyway.)

 I believe this project is easily scalable, as long as processing power and acquiring text

data are not an issue (which, to be fair, they always are). The Times corpus is written in NITF

(News Industry Text Format), so any similarly-formatted dataset could be passed into the

program (although one might have to repeat the moderate amount of cleaning I did through

Unix.) The list of team names would have to be edited, since mine is specific to the time period

of the given corpus, and teams often change names and locations (R.I.P, San Diego Chargers).

Nair 4

Acknowledgements and Citation

 I’d just like to thank Will Styler for helping me formulate my ideas when I asked him

about them far earlier in this process than I should’ve, and for sending me the magnificent Times

corpus. I want to thank Eric Meinhardt for giving me the idea to store my dictionary of sports

article sentiments in a JSON file, which has saved me a lot of processing time. I should also

mention Sports Reference, which is one of my favorite websites in the world and which makes

sports data collection so easy even I could do it.

Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment

Analysis of Social Media Text. Eighth International Conference on Weblogs and Social

Media (ICWSM-14). Ann Arbor, MI, June 2014.

Sandhaus, Evan. The New York Times Annotated Corpus LDC2008T19. DVD. Philadelphia:

Linguistic Data Consortium, 2008.

Sports Reference LLC. Basketball-Reference.com - Basketball Statistics and History.

https://www.basketball-reference.com/.

Sports Reference LLC. Pro-Football-Reference.com - Pro Football Statistics and History.

https://www.pro-football-reference.com/.

